
www.aasrc.org/aasrj American Academic & Scholarly Research Journal Vol. 4, No. 6, Nov. 2012

 1

Dynamic Data Allocation Methods in Distributed

Database System

Dejan Chandra Gope

dejan.gope23@gmail.com

Department of Computer Science and Engineering

Dhaka University of Engineering and Technology (DUET)

Gazipur-1700, Dhaka, Bangladesh.

ABSTRACT: Allocation of data or fragments in distributed database is a critical design issue and
requires the most effort. It has the greater impact on the quality of the final solution and hence the

operational efficiency of the system. Performance of the distributed database system is heavily dependent

on allocation of data among the different sites over the network. The static allocation provides only the

limited response to the change in workload. So, choosing an appropriate technique for allocation in the

distributed database system is an important design issue. In this paper, a new dynamic data allocation for

distributed database system has been proposed. The proposed methods reallocates data with respect to the

changing data access patterns with time constraint. This methods will decrease the movement of data over

the network and also improve the overall performance of the system. A new dynamic data allocation
algorithm for non-replicated distributed database systems (DDS), namely the NNA algorithm. This

algorithm reallocates data with respect to changing data access pattern for each fragment. In this algorithm,

data is moved to a node which is the neighborhood and also placed in the path to the node with maximum

access counter. This algorithm is very suitable for DDS in the networks which have low bandwidth and

frequent requests for a data fragment come from different sites by providing data clustering. The simulation

results show that for complex and large networks where the request for fragments generates more

frequently or the fragment size is large, the NNA algorithm provides better response time and spends less

time for moving fragments in the network.

Keywords: Distributed Databases, Static Data Allocation, Dynamic Data Allocation.

1 INTRODUCTION

Developments in database and networking technologies in the past few decades led to advances in
distributed database systems. A DDS is a collection of sites connected by a communication network, in

which each site is a database system in its own right, but the sites have agreed to work together, so that a

user at any site can access data anywhere in the network exactly as if the data were all stored at the user’s

own site. The primary concern of a DDS is to design the fragmentation and allocation of the underlying

database. Fragmentation unit can be a file where allocation issue becomes the file allocation problem. File

allocation problem is studied extensively in the literature, started by Chu and continued for non-replicated

and replicated models. Some studies considered dynamic file allocation. Various approaches have already
been described the data allocation technique in distributed systems. Some methods are limit in their

theoretical and implementation parts. Other strategies are ignoring the optimization of the transaction

response time. The other approaches present exponential time of complexity and test their performance on

specific types of network connectivity. Data allocation problem was introduced when Eswaran first

proposed the data fragmentation. Studies on vertical fragmentation, horizontal fragmentation and mixed

fragmentation were conducted. The allocation of the fragments is also studied extensively. In these studies,

data allocation has been proposed prior to the design of a database depending on some static data access

patterns and/or static query patterns. In a static environment where the access probabilities of nodes to the

fragments never change, a static allocation of fragments provides the best solution. However, in a dynamic

www.aasrc.org/aasrj American Academic & Scholarly Research Journal Vol. 4, No. 6, Nov. 2012

 2

environment where these probabilities change over time, the static allocation solution would degrade the

database performance. Initial studies on dynamic data allocation give a framework for data redistribution

and demonstrate how to perform the redistribution process in minimum possible time. In a dynamic data
allocation algorithm for non-replicated database systems is proposed named optimal algorithm, but no

modeling is done to analyze the algorithm. In the threshold algorithm is proposed for dynamic data

allocation algorithm which reallocates data with respect to changing data access patterns and focused on

load balancing issue. A major cost in executing queries in a distributed database system is the data transfer

cost incurred in transferring relations (fragments) accessed by a query from different sites to the site where

the query is initiated. The objective of a data allocation algorithm is to determine an assignment of

fragments at different sites so as to minimize the total data transfer cost incurred in executing a set of

queries. This is equivalent to minimizing the average query execution time, which is of primary importance

in a wide class of distributed conventional as well as multimedia database systems. In this paper we are

going to present and analyze a new approach for dynamic data allocation algorithm named Near

Neighborhood Allocation. This algorithm is based on optimal algorithm, but with different strategy for
selecting nodes for data movements.

2 RELATED WORK

Many reports have been published on the problem of allocation of data to nodes. The file allocation

problem was first investigated and developed a global optimization model to minimize overall operating

costs under the constraints of response time and storage capacity with fixed number of copies each file. The
assumption of fixed number of copies and stressed the difference between updates and retrieval proved

that formulation was NP-Complete and suggested heuristic rather than deterministic approaches be

investigated. Analyzed a file allocation problem in the environment of a distributed database for

optimization of query processing. By introducing replicated file, showed how communication cost

attributed to joins can be minimized. Considered the problem of file allocation for typical distributed

database applications with a simple model of transaction execution have observed that the fragment

allocation problem differs from the well-studied file allocation problem considered the allocation of the

distributed database to the sites so as to minimize total data transfer cost and devised a comprehensive

approach to allocate relations. Provides a nonlinear integer programming formulation and its linearization

incorporated issues like concurrency and queuing costs, while presents a max-flow approach provides an

integrated approach for fragmentation and allocation identified seven criteria that a system designer can use
to determine the fragmentation, replication and allocation. Provides approach for allocating fragments by

adapting a machine learning approach incorporates a concurrency mechanism, and present a replication

algorithm that adaptively adjusts to changes in read-write patterns. Provides an approach based on

Lagrangian relaxation and describes heuristic approaches. Beside allocating data, present a mathematical

modeling approach and a genetic algorithm-based approach to allocate operations to nodes has presented an

integer programming formulation for the non-redundant version of the fragment allocation problem. More

recently has given a high-performance computing method for data allocation in distributed database

system. In most of the above approaches, data allocation has been proposed prior to the design of a

database depending on some static data access patterns and/or static query patterns. Static allocation of

fragments provides the best solution where the access probabilities of nodes to fragments never change.

But, the static allocation solution would degrade the database performance in a dynamic environment,

where these probability change over time. Over past few years, work has been introduced for dynamic data
allocation in database systems. Give a model for dynamic data allocation for data redistribution. In an

algorithm is proposed for dynamic data allocation algorithm, which reallocates data with respect to

bringing changing data access pattern presents an approach based on machine learning, considers

incremental allocation and reallocation based on changes in workload has given a dynamic object

allocation and replication algorithm with centralized control incorporated security considerations into the

dynamic file allocation process. In an optimal algorithm for non-replicated database systems is proposed

has introduced a threshold algorithm for non-replicated distributed databases. In the threshold algorithm,

the fragments are continuously reallocated according to the changing data access patterns. In this paper, a

new dynamic data allocation algorithm for non-replicated distributed database system has been proposed

which is an extension of work carried out. The proposed algorithm reallocates data with respect to the

changing data access patterns with time constraint.

www.aasrc.org/aasrj American Academic & Scholarly Research Journal Vol. 4, No. 6, Nov. 2012

 3

3 METHODOLOGY

NNA algorithm is based on optimal algorithm. In optimal algorithm initially, all fragments are distributed

over the nodes according to any method. Afterwards, any node j, runs the optimal algorithm described as

following for every fragment I, that it stores.

(1) For each (locally) stored fragment, initialize the access counter rows to zero. (S = 0 ik were k = 1,..,n)

(2) Process an access request for the stored fragment

(3) Increase the corresponding access counter of the accessing node for the stored fragment. (If node x

accesses fragment I, set Six = Six +1)

(4) If the accessing node is the current owner, go to step 2.

(5) If the counter of a remote node is greater than the counter of the current owner node, transfer the

ownership of the fragment together with the access counter array to the remote node. (i.e fragment

migrates) (If node x accesses fragment I and Six > Sij , send fragment I to node x)

(6) Go to step 2. The problem of this approach is that if the changing frequency of access pattern for each

fragment is high, it will spend a lot of time for transferring fragments to different nodes. So, the response

time and delay will be increased.

In NNA algorithm, the requirement for moving a fragment is obtained as in optimal algorithm. But, the
destination of moved data is different. In our method we consider the network topology and routing for

specifying destination. In other words the destination of the moved fragment is the neighbor of the source

which is exists in the path from the source to the node with highest access pattern. Any routing algorithm

can be used but we use link-state routing algorithm.

By using this approach we avoid from frequently moving data because finally the fragment will be placed
in a node which has average access cost for nodes that using it. So, delay of movement will be reduced.

Furthermore, the response time also will be improved. Another aspect of NNA algorithm is that the

fragments which are used by a node or neighbors of a node can be clustered. By using this clustering we

can effectively respond to the requests. For example according to the Figure 1 assume that node G, H, I and

E frequently send a request for a fragment i which is on the node A. According to our algorithm, after that

number of requests exceeded from the predefined threshold, we move the fragment i to node C. If the

requests are continued after fragment migration, we move the fragment to node B. This approach will be

continued until the fragment reaches to node G. By placing the fragment on node G, the requests from G,
H, I and E will be responded with less delay but not with minimum delay. In this step, data is in a stable

state. After this step, if one of the nodes H, G and E request the data more frequently than the other nodes,

the fragment will be placed in it. By sending the fragment to the nodes that request it with the predefined

threshold, the data will be migrated frequently from one node to the other node and it takes a lot of time

and also responses will be send by a lot of delay when the data is moving. Using NNA approach, avoids

form these problems with trade off of providing less delay not minimum delay.

4. EXPERIMENT ENVIRONMENT AND SIMULATION RESULTS

In this experiment, we used the topology shown in figure 1. Our routing is based on link cost using Dijkstra
algorithm (Shortest Path First). In our experiment links cost can change over simulation. So our system has

9 nodes as shown below. In standard mode our system has 4 nodes as active nodes to send queries. A, C, D

and H are active nodes. A’s Rate is 0.5 of others in all of experiments. Simulation length is 20000 cycle.

Activation is from 0 to 10000. In our experiments, we consider two factors: average delay for receiving the

response for a fragment request and average time spent for moving data from one node to the other node.

We will investigate the effect of different parameters on these factors.

Fragment Size

Figure 2 and 3 show the effect of fragment size on these factors. As can be seen form Figure 2, we show
the linear approximation for the effect of fragments size on the delay of response to a query. As can be seen

there is a threshold value (near 8000 Byte) that defines the situations each algorithm performs better than

the other one. For fragments less than 8000 bytes optimal algorithm is better and when fragments in the

DDB are larger than 8000 bytes, NNA is preferred. In different networks this threshold may be different.

But we can generally conclude that for large fragments NNA performs better.

www.aasrc.org/aasrj American Academic & Scholarly Research Journal Vol. 4, No. 6, Nov. 2012

 4

0

50

100

150

200

250

500
1500

2500
3500

4500
5500

6500
7500

8500
9500

10500

11500

Fragment Size (Bytes)

D
el

ay
 o

f
R

es
p

o
n

se

Send Data to Dest

Send Data to Next

Linear (Send Data to Next)

Linear (Send Data to Dest)

0

50

100

150

200

250

300

350

50
0

15
00

25
00

35
00

45
00

55
00

65
00

75
00

85
00

95
00

10
50

0

11
50

0

Fragment Size (Bytes)

T
im

e
S

p
en

t
fo

r
F

ra
g

m
en

t

M
o

ve
m

en
t

Send Data to Dest

Send Data to Next

 Figure-1: The topology of the experiment

According for Figure 3, for small fragments the average time spent for moving data in NNA algorithm is
larger than optimal algorithm and for larger fragments it is reversed. Its reason is that for small fragments

the cost of moving data to destination node is low and so, the movement cost is not exceeded to access cost.

In the case of large fragments the movement of fragments takes a lot of time and also increased the network

traffic. So, less movement will produce a lot of advantages that overcomes to the access cost.

Query Production Rate

Figure 4 and 5 shows the effect of query production rate on our factors. As can be seen if the rate of query
is increased, the delay of response and also average time for fragment movement is decreased. Because the

high rate of query causes each fragment find its proper owner node and stays on it sooner. So, the delay of

response for a fragment will be decreased. As shown, NNA algorithm except the situation where the rate of

query production is very low, in other situations performs better than optimal algorithm.

Figure-2: Effect of fragment size on the delay of responding to a fragment request in optimal and NNA approach.

www.aasrc.org/aasrj American Academic & Scholarly Research Journal Vol. 4, No. 6, Nov. 2012

 5

0

50

100

150

200

250

300

25 50 75
100

125
150

Query Production Rate

D
el

ay
 o

f
R

es
p

o
n

se
Send Data to Dest

Send Data to Next

0

50

100

150

200

250

300

25 50 75
100

125
150

Query Production Rate

T
im

e
S

p
en

t
fo

r
F

ra
g

m
en

t

M
o

ve
m

en
t

Send Data to Dest

Send Data to Next

0

50

100

150

200

250

300

350

400

450

2 4 6 8

Number of Active Nodes

D
el

ay
 o

f
R

es
po

ns
e

Send Data to Dest

Send Data to Next

0

50

100

150

200

250

300

2 4 6 8

Number of Active Nodes

Ti
m

e
Sp

en
t f

or
 F

ra
gm

en
t

M
ov

em
en

t

Send Data to Dest

Send Data to Next

Figure-3: Effect of fragment size on the average time spent for moving fragments in optimal and NNA approach.

Figure-4(a): Effect of query production rate on the delay of responding to a fragment request in optimal and NNA

approach.

Figure-4(b): Effect of query production rate on the average time spent for moving fragments in optimal and NNA
approach

Figure-5: Effect of number of nodes in the network on the delay of responding to a fragment request in optimal and
NNA approach

www.aasrc.org/aasrj American Academic & Scholarly Research Journal Vol. 4, No. 6, Nov. 2012

 6

 Figure-6: Effect of number of active nodes on the average time spent for moving fragments in optimal and NNA

approach

Number of Active Nodes

As shown in Figure 5, as the number of nodes in our network increases, the difference between optimal and
NNA algorithm is appeared well. In our experiment we change the number of nodes form 2 to 8. According

to the results we conclude that in larger networks NNA algorithm respond to a request with much lower

delay than optimal algorithm. As shown in Figure 6 We can also predict that as the number of nodes

indifferent networks the average time spent for moving fragments in NNA algorithm is less than optimal

algorithm. But this conclusion needs to be experimented on more complex networks.

5. CONCLUSION AND RUTURE WORK

In this paper we represented a new dynamic data allocation algorithm in DDB named Near Neighborhood
Allocation (NNA) algorithm. This algorithm is based on optimal algorithm but the difference is in its

approach for selecting destination node of moving fragments. In our experiments we consider two factors,

average delay of responding to a fragment request and average time spent for moving fragments in the

networks. We examine the effect of different parameters on these factors. Findings of our experiments

indicate that for larger fragment size and query production rate, the NNA algorithm performs better and for

small fragment size and query production rate the optimal algorithm performs better. The threshold for
fragment size is almost 8000 bytes. For larger networks, by using NNA algorithm we can decrease the

delay of response to a fragment regarding to optimal algorithm.

Distributed databases are being increasingly used in various organizations, supported by availability of

various distributed database management system software products. The decision on how to distribute

organizational database using distributed database management system is an important issue, affecting both

cost and performance. Performance of distributed database system is heavily dependent on allocation of
data among different sites, because major cost in executing queries in a distributed database system is the

data transfer cost incurred in moving data accessed by a query from different sites to site where the query is

initiated. The static allocation provides only limited response to changing workload. This paper provides a

dynamic algorithm for non-replicated distributed database systems. Purposed algorithm will decrease the

movement of fragment during the reallocation process as compare to optimal and threshold algorithms.

This work is a significant effort to minimize the amount of data transferred during processing the

application.

References
L. C. John, A Generic Algorithm for Fragment Allocation in Distributed Database Systems, ACM, 1994.

Ahmad, I., K. Karlapalem, Y. K. Kwok and S. K. Evolutionary Algorithms for Allocating Data in

 Distributed Database Systems, International Journal of Distributed and Parallel Databases, 11: 5-32,

 The Netherlands, 2002.

 A. Brunstroml, S. T. Leutenegger and R. Simhal, Experimental Evaluation of Dynamic I)ata Allocation

 Strategies in a Distributed Database with changing Workloads, ACM Transactions on Database

 Systems, 1995.

A. G. Chin, Incremental Data Allocation and ReAllocation in Distributed Database Systems, Journal of

 Database Management; Jan-Mar 2001; 12, 1; ABI/INFORM Global pg. 35.

T. Ulus and M. Uysal, Heuristic Approach to Dynamic Data Allocation in Distributed Database Systems,

 Pakistan Journal of Information and Technology 2 (3): 231-239, 2003, ISSN 1682-6027.

P.M.G. Apers, “Data allocation in distributed database systems,” ACM Transactions on Database Systems,

 vol. 13, no. 3, pp. 263–304, 1988.

Y. F. Huang and J. H. Chen, Fragment Allocation in Distributed Database Design Journal of Information

www.aasrc.org/aasrj American Academic & Scholarly Research Journal Vol. 4, No. 6, Nov. 2012

 7

 Science and Engineering 17, 491-506, 2001.

I. O. Hababeh , A Method for Fragment Allocation Design in the Distributed Database Systems, The Sixth

 Annual U.A.E. University Research Conference, 2005.

T. Özsu, and P. Valduriez, 1991. Principles of Distributed Database Systems. Prentice-Hall Book Co.,

 Englewood Cliff, USA.

Chu, W.W., 1969. Optimal File Allocation in a Multiple Computer System, IEEE Transactions on

 Computers, C-18: 885-889.

R.Azoulay-Schwartz, and S. Kraus, Negotiation on Data Allocation in Multi-Agent Environments,

 Autonomous Agents and Multi-Agent Systems, 5: 123-172, 2002.

B.W. Wah, Data Management in Distributed Systems and Distributed Data Bases, Ph.D. Dissertation,

 University of California, Berkeley, CA, USA, 1979.

A.J Smith, Long-term File Migration: Development and Evaluation of Algorithms, Communications of

 ACM, 24: 512-532. 1981.

K.P Eswaran, Placement of Records in a File and File Allocation in a Computer Network, in Proceedings

 of IFIP Congress on Information Processing, Stockholm, Sweden, pp: 304-307. 1974.

S.B.Navathe, S. Ceri, G. Wiederhold and J. Dou, Vertical Partitioning Algorithms for Database Design,

 ACM Transaction on Database Systems, 9: 680-710. 1984.

S.Ceri, B.Pernici and G. Wiederhold, Optimization Problems and Solution Methods in the Design of Data

 Distribution, Information Systems, 14: 261-272. 1989.

S.Ceri, S.B. Navathe and G. Wiederhold, Distribution Design of Logical Database Schemas, IEEE

 Transactions on Software Engineering, 9:487-503. 1983.

Y.Zhang, and M.E. Orlowska, On Fragmentation Approaches for Distributed Database Design, Information

 Sci., 1: 117-132. 1994.

D.L.Eager, E.D.Lazowska, and J.Zahorjan. Adaptive load sharing in homogeneous distributed systems.

 IEEE Transactions on Software Engineering, vol. 12, No. 5, 1986, pp. 662-675.

M.L.Fisher and D.S.Hochbaum. Database Location in Computer Networks. J. ACM, Vol. 27, 1980, pp.

 718-735.

A.Hac. A Distributed Algorithm for Performance Improvement Through File Replication, File Migra-tion,

 and Process Migration. IEEE TOSE, vol. 15, No. 11, 1989, pp. 1459-1470.

A.Hac, X.Jin, and J-H.Soo. Algorithms for File Replication in a Distributed File System. Journal of

 Systems Software Vol. 14, 1991, pp. 173-181.

H.Inazumi, M.Kochiya, and S.Hirawawa. On the Trade-Os Between the File Redundancy and the

 Communication Costs in Distributed Database Systems. IEEE Tran. Systems, Man, and Cybernetics,

 vol. 19, No. 1, 1989, pp. 108-112.

Dejan Chandra Gope is a student in the Department of Computer Science

and Engineering at the University of Dhaka University of Engineering and

Technology, Bangladesh. He received Bachelor of Science in Computer

Science and Engineering (B.Sc) from the University of Dhaka University of

Engineering and Technology in 2012. He is now studying Master of Science in

Computer Science and Engineering (M.Sc) at the same University. His

www.aasrc.org/aasrj American Academic & Scholarly Research Journal Vol. 4, No. 6, Nov. 2012

 8

researchinterests lie in studying the role of computer vision and advanced

human-computer interaction.

