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Abstract. A new model technique based on the linearization of Burger’s equation is introduced. In this 
paper we consider the approximate solution of the following nonlinear one dimensional 

Burgers’ equation. A new discretization scheme is introduced. A proof of convergence of 

the approximate solution is given and error estimates are derived. The numerical results 

obtained by the suggested technique are compared with the exact solution of the problem 

and also with other numerical methods. It is shown that our scheme is comparable with the 

others, and the numerical solution displays the expected convergence to the exact one as 

the mesh size is refined. 
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1. Introduction 

Burger [3] first introduced a nonlinear wave equation to investigate the wave propagation problem subject to 

linear dissipation and nonlinear advection terms. This equation is a non-linear parabolic one dimensional partial 

differential equation given by: 

( , ), ( , )t x xx Tu uu vu f x t x t Q                                   (1.1) 

Here  , ( , ), , , (0, )TQ I a b a b I T      , and a and b are real positive constants. We consider 

equation (1.1) associated with the Dirichlit boundary condition 

0u  ,               ( , )x t I ,                                  (1.2) 

and the initial condition 

0( , 0) ( ), ,u x u x x                                                (1.3) 

where ( , )u x t  is the dependent variable, x and t are the independent variables, 0   is the kinematics viscosity of 

the fluid that controlling the balance between convection and diffusion, and f and 0u  are given functions of their 

arguments.  

The nonlinear convection diffusion equation (1.1) has attracted considerable interest during the last few decades, 

since it services as a mathematical model for wide range of applications, from the fluid dynamics and turbulence to 

shock wave formation and traffic flow ( cf. [1, 2, 4, 6, 13, 15, 16, 17, 18] and the references therein). Another reason 

for the extensive literature of this type of problems is the similarity of this equation with Navier-Stokes equations since 

both include nonlinear terms of type: unknown function multiplied by a first derivative and both also contain higher 

order terms multiplied by a parameter. 

Since analytical solutions of the Burger’s equation were obtained for restricted values of kinematics viscosity [4, 

10], it is of interest from the numerical viewpoints to solve this equation for various values of viscosity and make 

comparison of numerical solution with analytical ones. Therefore, the numerical solution of Burger’s equation for 

more than three decades, has been a very active area of research in mathematics, especially for finite difference and 
finite element methods. However, in the finite difference regime, the diffusion term can be implemented via a 

backward Euler or upwind difference expression for the convective first derivative term, which essentially introduces a 

truncation error which has the same for as the diffusion term. Moreover, in many cases of physical interest, the 
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equation is advection-dominated; that is, u is much larger than . Therefore, whether the global structure of the 
equation is more elliptic or parabolic depends on the relative magnitude of one term against the other, the numerical 

algorithms implemented for the solution of this problem and the techniques used for their analysis, tend to be very 

different. Really, the standard numerical techniques do not work well for these types of problems, so that the 

mathematicians think of other methods to deal with them. One of the new algorithms designed for dealing with such 

problems is the suggested scheme in this work, which is based on combining the method of characteristics with Roth 
method (the method of lines) to attack the problem of nonlinearity. 

The main contribution of this paper is to use the analysis of [5, 7] to introduce and prove the convergence of a 

competitive numerical scheme to solve Burger’s problem. In addition, we obtain error estimates for the solution of the 

full discretization scheme. The novelty of our algorithm is in the way we discretized the equation with respect to the 

time variable by backward Euler formula and then we compensate the convection term by the characteristic method to 

linearize the system of algebraic equations that result from the space discretization scheme. 

The paper is organized as follows: Section 2 contains the general formulation of the problem under 

investigation. Section 3 is devoted to describe and analyze a time discretization scheme. The convergence of the 

discrete sequence of iterations is shown in Section 4. Section 5 concerns the error estimates for the approximate 

solution. Finally, in Section 6, the proposed scheme is directly applicable to solve some numerical examples to support 

the efficiency of the suggested numerical scheme. 

 

2.  Notations, assumptions and definitions 

In the sequel, we will denote by  . , .  either the standard inner product in 2 2( )L L   or the pairing between  

1
0( )V H   and 

* 1V H  (see e.g. [11, 13]). We use the symbols . , .  and 
*

.  as the norms in 2( )L  , 

V , 
*V , respectively. By ,

w
  , we mean the strong and weak convergence. Also, we introduce some notations 

concerning the time discretization of our problem. 

1i i
i

z z
z 
 


,             

1
(., ) ,

i
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I

z z t dt
 

       1 ,i n   
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0
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i i

z


. The following elementary relations will be used in the following analysis: 

2

22 .

1 1 1 1

jn n n
a a a aj i j j

i i j j

 
  
 

    

    ,                                           (2.1) 

4

4 2 2 1( )
0( )

z z z z C
L

    


,                                           (2.2) 

and Young’s inequality 

2 21
,

2 2
ab a b a b


   


,                                              (2.3) 

where   is small constant. We will assume, throughout this work, the following hypotheses on the given data. 

(H1)  The functions  :f I R    is Lipschitz continuous in the sense of 

( ,  ) ( ,  )  f x t f x t c t t    ,              ,  t t I                                    (2.4) 

(H2)  
1

0 0( )u H   

Under these assumptions, we can define the variational solution of problem (1.1)-(1.2) 

Definition 2.1 The measurable function ) ;())( ;( 22 VILLICu   with ) ;( *
2 VILut   and 

0( ,0) ( )u x u x  is said to be a weak (variational) solution of (1.1)(1.3) if and only if the integral identity 
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( , ) ( , ) ( , ) ( , )u uu v u ft x x x       ,                                          (2.5) 

holds for all V  and a.e. It . 

Remark. It is evident that for any functions  
1, ( )H    and 2( )L   

1 2 1 2
( , )x x           ,                                     (2.6) 

and 

21 1
( , ) ( , )

2 2
x x         ,                                       (2.7) 

3. The semidiscretization scheme. A prioi estimates 

Our main goal is to approximate (1.1)(1.3) from a numerical point of view and to prove its convergence. The 
suggested technique is based on the combination of the characteristics and Roth methods. Using a backward Euler 

difference scheme for the time derivative and then applying the characteristic method to compensate the convection 
term which is discretized explicitly so that the underlying equation is converted into a linear system of algebraic 

equations that easily solved numerically at each subsequent time level. To this purpose, let n be a positive integer. 

Subdivide the time interval I by the points it , where  iti , nT , ni  ,,1 ,0  . The suggested discretization 

scheme of problem (2.5) consists of the following problem (in the weak sense): 

Find (., ) , 1, ,i iw u t V i n    such that 

0 0w u  in , (3.1) 

1 1 1( )i i iw w x w
      (3.2) 

1( , ) ( , ) ( , )i i x i x iw w v w f
           V , (3.3) 

where x  denotes to the derivative with respect to x, ( , )i if f x t  and 
1,2( )w W   is an extension of 

1,2 * *( ),w W    , satisfying 

1 1( ) ( )H H
w C w 

                                                     (3.4) 

The existence of a weak solution iw V  is guaranteed by Lax–Milgram argument. By means of iw , ( ni  ,,1 ,0 

) determined by the proposed scheme (3.1)-(3.3) in each time step it , we introduce the following piecewise linear 

functions (Rothe functions) 

0 1 1(0) , ( ) ( ) ,n n
i i iw u w t w t t w            for  ,1t t ti i   

,   ni  ,,2 ,1  ,    (3.5) 

and the corresponding step function 

0 1(0) , ( ) for ( ,  ]n n
i i iw u w t w t t t                                        (3.6) 

Using the notation of Rothe function and its corresponding step function, a piecewise constant interpolation of 

equation (3.3) over I yields 

( , ) ( , ) ( , ) ( , )n n n n n
t x x xw w w v w f            ,   V                (3.7) 

where ( ) ( )n nw t w t   , ii ttt 1  and  (.,  )n nf f t  with i
n tt  . 
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In order to show the stability of the discrete solution and prove the convergence results, we shall derive some a 

priori estimates. 

Lemma 3.1 Under the assumptions (H1) and (H2), there exists a positive constant C such that 

2 2 2
1

1 1

max
s s

i s i i
si i

w w w w C
 

       ,                                    (3.8) 

for any s. 

Proof. Let us choose iw    in (3.3) and summing over i from 1 to s, we obtain 

  1 1
1

1 1 1 1

( )
, , ( , ( )) ( , )

s s s s
i i

i i i x i x i i i i
i i i i

w w
w w w w w w f w


 


   

 
           

 
 

    ,      (3.9) 

With the aid of (3.2) and Younge’s inequality (2.3), we estimate the second term by 

2 2 21 1
1

1 1 1 1

( ) 1
, 2

2 2

s s s s
i i

i i i i i
i i i i

w w
w w w w w


 


   

  
         

   
 

            (3.10) 

Taking into consideration (2.1), the elliptic term is estimated by 

 
22 2

1 0 1
1 1

( , ( ))
2

s s

x i x i i x s x x i i
i i

w w w w u w w 
 

 
           

 
 

   

2 2 2
0 1
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2

s

s i i
i

w u w w 


 
    

 
 

                         (3.11) 

And the last term is estimated as follows 

2 2

1 1 1 1

2 2 2

1 1 1

1
( , ) 2

2

1
(0) 2 (3.12)

2
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Collecting (3.9)-(3.12), using ( 2H ), and choosing   sufficiently small, we get 

2 2 2 2 2
1

1 1 1 1

j js s

i s i i i i
i i i i

w w w w c f w 
   

                

2 2
1

1 1

1

2 2

s s

i i i
i i

w w w 
 


   

 
                                   (3.13) 

Applying Gronwall’s inequality and setting 0
2


  


, we conclude the proof. 

Lemma 3.3  Uniformly with respect to n one has 

2 2

2

( ; ( ))

n
t

L I L
w C


       

2

( ; )

n

C I V
w C ,      

2

( ; )

n

C I V
w C                        (3.14) 

2 2 2 2

2 2

2( ; ( )) ( ; ( ))

n n n n

L I L L I L

C
w w w w

n


 
    ,                                           (3.15) 
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2 2

2 2

( ; ) ( ; )

n n n n

L I V L I V

C
w w w w

n
                                                              (3.16) 

Proof.  The estimates (3.14)1 and (3.14)2 are a consequence of (3.8)1. By the use of the identity 

12n n
i iw w w w    ,                                                   (3.17) 

the estimates (3.14)2, (3.14)3, (3.15) and (3.16) are a consequence of (3.8)2, (3.8)3 and the definitions of 
nw  and 

nw  

and thus the proof completes. 

4. Convergence results 

This section is devoted to proving the convergence of the proposed scheme and estimating its accuracy. Before 

we are able to prove convergence we need to prove the compactness of 
nw  in ))( ;( 22 LIL  which is a 

consequence of the following assertion. 

Lemma 4.1 The estimate 

2

0

1
( ) ( )

T z n nw t z w t C z
n

  
    

 
 ,                                        (4.1) 

holds uniformly for 00 zz   and n. 

Proof. [11] We sum up (3.3) for kssi   , ,1   considering ( )s k sw w    . Then we sum it up for 

kns  ,,1   and obtain the estimate 

2

0

n k

s k s
s

u u Ck






    ,                                           (4.2) 

Hence for  )1(kzk  we conclude the desired estimate. 

Theorem 4.1 There exists 
1

2 2 2( ;  ( )) ( ;  ( ))u L I L H I L     such that 

2 2

2

2 2

in ( ; ( ))

, in ( ; )

in ( ; ( ))

n

w wn n

wn
t t

w u L I L

w u w u L I V

w u L I L

 



  


   


,                             (4.3) 

(in the sense of subsequences). Moreover, we have 

2 2 2

2 2
2

( ; ( )) ( ; )

n n

L I L L I V
u w u w C


                                      (4.4) 

Proof. The estimate (3.14)2 implies 
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2( ( ,  ) ( ,  ))n n

Q

w x y t w x t C y   ,           0y y   

Hence, from Lemma 4.1, { }nw  is compact in ))( ;( 22 LIL  because of Kolmogorov’s compactness argument. So 

we can conclude that 
nw u  and 

nw u  in ))( ;( 22 LIL  and also pointwise in Q. Also by the elementary 

identity (2.2) and the fact that 2 2( ;  ( )) ( ;  )nw L I L C I V   , we obtain that  
2

nw  is bounded in 

))( ;( 22 LIL  and  
2

nw  is weakly convergent in ))( ;( 22 LIL . But 
nw u  in ))( ;( 22 LIL , so 

 
2

2wnw u  in ))( ;( 22 LIL                                          (4.5) 

Hence, by (3.16), we have 

 
2

2wnw u   in ))( ;( 22 LIL ,                                         (4.6) 

and this implies that 

( , ) ( , )n n
x xw w uu     ,   V                                           (4.7) 

It remains to prove that 
nw ut t   . For each It , by Lemma 3.3, 

nwt  is uniformly bounded in the reflexive 

Banach space ))( ;( 22 LIL  and hence has a subsequence which converges weakly to an element 
 V  (Eberlin-

Smulian theorem [12]). Thus 

 
w

nwt     in 
V     It                                           (4.8) 

Using Fubini theorem, we get 

   0 0
( ) , ,

tn n
tw t u w dt                                               (4.9) 

Taking the limit as n , we obtain 

   0 0
, ,

t
u u dt     ,                                          (4.10) 

which implies 

0 0
( ) , 0

t
u u t dt      
                                            (4.11) 

Therefore, we have ut   .  Using the above discussions and the fact that and hence 
nf f  in 2 2( ;  ( ))L I L   

and passing with n   in (3.7) the proof is complete. 
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To obtain an error estimate, let us start by introducing the following additional notation ( ) n
ue u t w  . We 

now take the difference between (2.5) and (3.7) we easily obtain the equality 

( ( ), ) ( , ) ( ( ), ) (( ), )n n n n n
t x xu w u w w v u w f f                ,   V         (4.12) 

Take ue   and write the new equation as I II III IV   .  To begin with, we split the parabolic term into 

two parts 1 2I I I  , where 

2
1

1

2
u

d
I e

dt
 ,                                                           (4.13) 

2 2
2

1
2

2

n n n n
u uI w w e w w e     


                              (4.14) 

The second term of equation (4.12) is bounded by 

( ( ), ) (( ) , )n n n
x u x uII u u w e u w w e                                              (4.15) 

Using the fact that ) ;())( ;( 22 VILLICu  , (2.6), (2.7) and Young’s inequality the two parts of this inequality 

yield 

2 21
2

2

n
uII u w e   


,                                                         (4.16) 

In view of (H1) and Younge's inequality we can estimate the right hand by 

2 2 221 1

2 2 2 2

n
u uIV f f e e

 
     

 
                        (4.17) 

Collecting all the previous bounds, choosing   and   sufficiently small and applying the nonlinear Gronwall lemma 

we obtain (4.4). 

5. Numerical experiment and discussion 

In this section, we shall solve Burger’s equation (1.1) in (0,1) (0, )TQ T  . We employ an explicit central 

difference scheme for the space derivative so that we get a full discretization scheme with an error estimation 
2O( ) O( )h   . The boundary and initial conditions we have used in this experiment are 

(0, ) (1, ) 0, 0u t u t t    and ( , 0) sin , 0 1u x x x   . We use a spatial finite difference discretization to 

solve the linear elliptic problem (3.3) with 0f  . We shall compare the results obtained by the suggested 

approximation scheme (3.1)-(3.3) with the exact solution and with other methods which are introduced by [8]. Tables 

1-4 display, respectively, the results for 10,1   and 0.1. It is observed that all the results of the proposed 

approximation scheme are in good agreement with the exact ones and exhibit the expected convergence. In addition to 

the simplicity due to the solution of linear systems of equations, in view of these tables, we notice that the convergence 

rate of our scheme is slightly better than that of [9]. 

 

Table 1.  Comparison between exact and numerical solutions at 0.02t  , 10  , 0.0001   and 0.01t  , 

10  , 0.0001  , respectively. 

x 0.02t  , 10  , 0.0001   0.01t  , 10  , 0.0001   

 
Exact solution Suggested 

scheme 

Hon and 

Mao[9] 

Exact solution Suggested 

scheme 

Hon and Mao 
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0.0 0 0 0 0 0 0 

0.1 0.0428 0.0428 0.0433 0.1146 0.1145 0.1152 

0.2 0.0815 0.0815 0.0823 0.2182 0.2180 0.2192 

0.3 0.1122 0.1124 0.1133 0.3006 0.3008 0.3021 

0.4 0.1320 0.1325 0.1333 0.3539 0.3546 0.3556 

0.5 0.1389 0.1398 0.1403 0.3727 0.3739 0.3745 

0.6 0.1322 0.1334 0.1335 0.3550 0.3566 0.3567 

0.7 0.1125 0.1138 0.1136 0.3024 0.3042 0.3039 

0.8 0.0818 0.0829 0.0826 0.2200 0.2215 0.2211 

0.9 0.0430 0.0436 0.0434 0.1157 0.1166 0.1163 

1.0 0 0 0 0 0 0 

 

Table 2.  Comparison between exact and numerical solutions at 0.1t  , 1  , 0.00001   and 0.5t  , 

0.1  , 0.01  , respectively. 

 

x 0.1t  , 1  , 0.00001   0.5t  , 0.1  , 0.01   

 
Exact solution Suggested 

scheme 

Kutluay et al. 

N=10 [8] 

Exact solution Suggested 

scheme 

Hon and Mao 

0.0 0 0 0 0 0 0 

0.1 0.10954 0.1047 0.11048 0.1099 0.0637 0.1104 

0.2 0.20979 0.2019 0.21159 0.2180 0.1302 0.2186 

0.3 0.29190 0.2841 0.29435 0.3222 0.2020 0.3227 

0.4 0.34792 0.3433 0.35080 0.4190 0.2815 0.4194 

0.5 0.37158 0.3719 0.37458 0.5028 0.3686 0.5023 

0.6 0.35905 0.3636 0.36189 0.5623 0.4538 0.5618 

0.7 0.30991 0.3180 0.31231 0.5759 0.4959 0.5744 

0.8 0.22782 0.2365 0.22955 0.5055 0.4479 0.5030 

0.9 0.12069 0.1262 0.12160 0.3093 0.2787 0.3059 

1.0 0 0 0 0 0 0 
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