On fuzzy T_i (i = 0, 1, 2, 3) spaces in fuzzy topological groups

1- Assist.prof.Dr.Munir A.Al-khafaji

mnraziz@yahoo.com

2- Dr.Taghreed Hur Majeed

taghreed mageed@yahoo.com

3- Mohamad Thijeel Hmood

mohamad.thijeel@yahoo.com

Department of Mathematics , College of Education, AL-Mustinsiryah University , Baghadad, Iraq

Abstract. The aim of this work is to introduce and study the concepts of fuzzy separation axioms ($fuzzy T_0 - spase, fuzzy T_1 - spase, fuzzy T_2 - spase, fuzzy T_3 - spase,$) in fuzzy topological groups and study some theorems and study the relations between these spaces.

Introduction

The concept of fuzzy sets was introduced by zadeh [1]. Chang [2] introduced the definition of fuzzy topological spaces and extended in a straight forward manner some concepts of crisp topological spaces to fuzzy topological spaces. Rosenfeld [3] formulated the elements of a theory of fuzzy groups. A notion of a fuzzy topological group was proposed by foster [4].in this paper we introduce and stady some fuzzy separation axioms in fuzzy $T_i - spaces$, where i = 0,1,2,3 in fuzzy topological groups.

Definition (1.1) [L. A. ZADEH, P. E. KLODENK, G. J. KLIR. and Yuan]

If X is a collection of objects with generic element x, then a fuzzy set A in X is characterized by a membership function; $M_{\tilde{A}} : X \longrightarrow I$, where I is the closed unit interval [0, 1], then we write a

fuzzy set A by the set of points $\tilde{A} = \{(x, M_{\tilde{A}}(x)) \mid x \in X, 0 \le M_{\tilde{A}}(x) \le 1\}$.

The collection of all fuzzy subsets in X will be denoted by I^X,

i.e $I^X = {\tilde{A} : \tilde{A} \text{ is fuzzy set of } X}.$

Definition (1.2) [C.L.CHANG, B. HUTTON, R. LOWEN]

A fuzzy topology is a family \tilde{T} of fuzzy sets in X, satisfying the following conditions:

- (a) $\emptyset, X \in \widetilde{T}$.
- (b) If \tilde{A} , $\tilde{B} \in \tilde{T}$, then $\tilde{A} \cap \tilde{B} \in \tilde{T}$.

(c) If
$$\tilde{A}_i \in \tilde{T}$$
, $\forall i \in J$, where J is any index set, then $\bigcup_{i \in J} \tilde{A}_i \in \tilde{T}$.

 \tilde{T} is called fuzzy topology for X, and the pair (X, \tilde{T}) is a fuzzy topological space. Every member of \tilde{T} is called fuzzy open set (\tilde{T} -fuzzy open set). A fuzzy set \tilde{C} in X is called fuzzy closed set (\tilde{T} -fuzzy closed set) if and only if its complement \tilde{C}^{c} is \tilde{T} -fuzzy open set.

Definition (1.3) [K. K. AZAD, A. MUKHERJEE]

A function f from a fuzzy topological space (X, \tilde{T}) into a fuzzy topological space(Y, \tilde{F}) is fuzzy continuous function (F-continuous) if and only if the inverse image of each \tilde{F} -open fuzzy set is \tilde{T} -open fuzzy set.

Definition (1.4) [A. ROSENFELD]

Let X is a group and let \tilde{G} be fuzzy set of X. A fuzzy set \tilde{G} is called a fuzzy group of X if

- 1- $M_{\tilde{G}}(xy) \ge \min\{M_{\tilde{G}}(x), M_{\tilde{G}}(y)\}$ for all $x, y \in X$.
- 2- $M_{\tilde{G}}(x^{-1}) \ge M_{\tilde{G}}(x)$ for all $x \in X$.

Definition (1.5):

A fuzzy group \tilde{G} of a group X is called fuzzy symmetric if $(\tilde{G})^{-1} = \tilde{G}$.

Theorem(1.6):

Every fuzzy group \tilde{G} of X is fuzzy symmetric set.

Proof:

To prove $\tilde{G} = (\tilde{G})^{-1}$, to prove that for every $x \in X$, $M_{\tilde{G}(x)} = M_{(\tilde{G})^{-1}(x)}$. Since \tilde{G} fuzzy group, then for every $\in X$, $M_{\tilde{G}}(x) = M_{\tilde{G}}(x^{-1})$ $M_{\tilde{G}}(x) = M_{(\tilde{G})^{-1}}(x)$ Hence $\tilde{G} = (\tilde{G})^{-1}$.

Definition (1.7) [D.H.FOSTER]

Let G be a fuzzy group and (G, \tilde{T}) be a fuzzy topological space. (G, \tilde{T}) is called a fuzzy topological group if the maps $g: (G, \tilde{T}) \times (G, \tilde{T}) \rightarrow (G, \tilde{T})$, defined by g(x, y) = xy and $h: (G, \tilde{T}) \rightarrow (G, \tilde{T})$, defined by $h(x) = x^{-1}$ are fuzzy continuous.

<u>Definition (1.8) [J.KIM]</u>

Let \tilde{A}, \tilde{B} be fuzzy sets of G. Then the product $\tilde{A}\tilde{B}$ of \tilde{A} and \tilde{B} is the sub set of G and the inverse \tilde{A}^{-1} of \tilde{A} is the sub set of G by respectively formules, $M_{\tilde{A}\tilde{B}}(x) = \sup\{\min\{M_{\tilde{A}}(y), M_{\tilde{B}}(z): y, z = xand\}$

 $M_{\tilde{A}^{-1}}(x)=M_{\tilde{A}}(x^{-1}) \text{ for all } x\in G.$

Definition (1.9):

A fuzzy set in a fuzzy topological group (G, \tilde{T}) is called fuzzy neighborhood of a fuzzy point x in G if there is a fuzzy open set \tilde{U} in G, such that $x \in \tilde{U} \subseteq G$.

Definition (1.10):

A fundamental system of fuzzy neighborhood of \tilde{e} in (G, \tilde{T}) is a collection $\{\tilde{U}\}$ of fuzzy neighborhood of \tilde{e} such that every fuzzy neighborhood of \tilde{e} contains a member of $\{\tilde{U}\}$. If each member of $\{\tilde{U}\}$ is fuzzy open, we said of a fundamental system of fuzzy open neighborhood of \tilde{e} .

Theorem(1.11):

Let (G,\tilde{T}) be a fuzzy topological group, then there exists a fundamental system $\{\tilde{U}\}$ of fuzzy symmetric neighborhood of \tilde{e} .

Proof:

Let $\{\tilde{V}\}$ is a fundamental system of fuzzy open neighborhood of \tilde{e} .

Since $\tilde{e} = \tilde{e}^{-1}$ by theorem (1.6).

Shows that for each \tilde{V} in $\{\tilde{V}\}, \tilde{V}^{-1}$ is an fuzzy open neighborhood of \tilde{e} .

But $M_{\tilde{U}}(x) = \min \{ M_{\tilde{V}}(x), M_{\tilde{V}^{-1}}(x) \}$ is a fuzzy symmetric neighborhood of \tilde{e} , because

 $M_{\widetilde{U}^{-1}}(x) = \min \left\{ M_{\widetilde{V}}(x), M_{\widetilde{V}^{-1}}(x) \right\} = M_{\widetilde{U}}(x) .$

Therefore, each \widetilde{V} contains a \widetilde{U} .

On the other hand, each fuzzy neighborhood of \tilde{e} contains a \tilde{V} and so $\{\tilde{U}\}$ is a fundamental system of fuzzy symmetric neighborhood of \tilde{e} .

Definition (1.12):

A fuzzy topological group (G, \tilde{T}) is said to be

- 1- Fuzzy \tilde{T}_0 space if for any distinct fuzzy points \tilde{p} , \tilde{q} in G, there exists a fuzzy neighborhood \tilde{U} in G such that $\tilde{p} \in \tilde{U}$, $\tilde{q} \notin \tilde{U}$ or $\tilde{q} \in \tilde{U}$, $\tilde{p} \notin \tilde{U}$.
- 2- Fuzzy \tilde{T}_1 space if for any distinct fuzzy points \tilde{p} , \tilde{q} in G, there exists a fuzzy neighborhoods \tilde{U}, \tilde{V} in G such that $\tilde{p} \in \tilde{U}$, $\tilde{q} \notin \tilde{U}$ and $\tilde{q} \in \tilde{V}, \tilde{p} \notin \tilde{V}$.
- 3- Fuzzy T
 ₂ space (fuzzy Hausdorff -space) if for any distinct fuzzy points p

 , q

 in G, there exists fuzzy neighborhoods U

 , v

 in G such that p

 ∈ U

 , q

 ∉ U

 and q

 ∈ v

 , p

 ∉ v

 such that U

 ∩ v

 = Ø.
- 4- Fuzzy *regular* space if $\tilde{p} \in G$ and a closed fuzzy set $\tilde{F} \subseteq G$ with $\tilde{p} \notin \tilde{F} \exists$ fuzzy neighborhoods \tilde{U} and \tilde{V} s.t $\tilde{p} \in \tilde{U}$, $\tilde{F} \subseteq \tilde{V}$ and $\tilde{U} \cap \tilde{V} = \emptyset$
- 5- Fuzzy \tilde{T}_3 space if G are Fuzzy \tilde{T}_1 space and Fuzzy regular space.

Theorem(1.13):

Let (G, \tilde{T}) be a fuzzy topological group (G, \tilde{T}) , then

1- Every fuzzy T_3 -topological group is a fuzzy Hausdorff -space.

2- Every fuzzy Hausdorff –topological group is a fuzzy T_1 –space.

3- Every fuzzy T_1 -topological group is a fuzzy T_0 -space.

Proof:

Obvious.

Theorem(1.14):

Every fuzzy T_0 –topological group is a fuzzy T_1 –space.

Proof:

Let (G,\tilde{T}) be a fuzzy topological group. Let $\tilde{p} \neq \tilde{q}$, $\tilde{p}, \tilde{q} \in G$, there exists an fuzzy open neighborhood \tilde{U} of \tilde{p} such that $M_{\tilde{q}}(x) > M_{\tilde{U}}(x)$. Since $M_{\tilde{p}^{-1}\tilde{U}}(x) = M_{\tilde{V}}(x)$ is an fuzzy open neighborhood of \tilde{e} , $min \{M_{\tilde{V}}(x), M_{\tilde{V}^{-1}}(x)\} = M_{\tilde{W}}(x)$ is fuzzy open symmetric neighborhood of \tilde{e} and therefore $\tilde{q}\tilde{W}$ is a fuzzy neighborhood of \tilde{q} . Now $M_{\tilde{p}}(x) > M_{\tilde{q}\tilde{W}}(x)$ because otherwise $M_{\tilde{p}^{-1}}(x) \leq M_{\tilde{W}\tilde{q}^{-1}}(x)$ and , hence , $M_{\tilde{p}^{-1}}(x) \leq M_{\tilde{W}\tilde{q}^{-1}}(x) \leq M_{\tilde{W}\tilde{q}^{-1}}(x) \leq M_{\tilde{V}\tilde{q}^{-1}}(x) \leq M_{\tilde{p}\tilde{q}^{-1}}(x)$ But this implies that $M_{\tilde{e}}(x) = M_{\tilde{p}\tilde{p}^{-1}}(x) \leq M_{\tilde{p}\tilde{p}^{-1}\tilde{U}\tilde{q}^{-1}}(x) = M_{\tilde{U}\tilde{q}^{-1}}(x)$, or $M_{\tilde{q}}(x) \leq M_{\tilde{U}}(x)$, which is contradiction.

Theorem(1.15):

Every fuzzy T_1 –topological group is a fuzzy Hausdorff –space.

Proof:

Let (G,\tilde{T}) be a fuzzy topological group. Let $\tilde{p} \neq \tilde{q}$, $\tilde{p}, \tilde{q} \in G$, \because G is a fuzzy T_1 -space then { \tilde{p} } is a fuzzy closed set and therefore $\tilde{U} \in G$ and $\tilde{U} \notin {\tilde{p}}$ is an fuzzy open neighborhood of \tilde{q} and hence $\tilde{q}^{-1}\tilde{U}$ is an fuzzy open neighborhood of \tilde{e} . Let \tilde{V} is an fuzzy open neighborhood of \tilde{e} , such that $M_{\tilde{p}\tilde{V}^{-1}}(x) \leq M_{\tilde{q}^{-1}\tilde{U}}(x)$. Then $\tilde{q}\tilde{V}$ is an fuzzy open neighborhood of \tilde{q} . Let $\tilde{W} \in G$ and $M_{\tilde{W}}(x) > M_{\tilde{q}\tilde{V}}(x)$ which is an fuzzy open set. And $M_{\tilde{p}}(x) \leq M_{\tilde{W}}(x)$. For otherwise $M_{\tilde{p}}(x) > M_{\tilde{q}\tilde{V}}(x)$ and, hence, $\min\{M_{\tilde{p}\tilde{V}}(x), M_{\tilde{q}\tilde{V}}(x)\} \neq \emptyset$. But this shows that $M_{\tilde{p}}(x) \leq M_{\tilde{q}\tilde{V}\tilde{V}^{-1}}(x) \leq M_{\tilde{q}(\tilde{q}^{-1}\tilde{U})}(x) = M_{\tilde{U}}(x)$, which is contradiction because $\tilde{p} \notin \tilde{U}$. Clearly $\{M_{\tilde{W}}(x), M_{\tilde{q}\tilde{V}}(x)\} = \emptyset$, $M_{\tilde{q}}(x) \leq M_{\tilde{q}\tilde{V}}(x)$ and $M_{\tilde{p}}(x) \leq M_{\tilde{W}}(x)$, $\tilde{q}\tilde{V}$ and \tilde{W} are fuzzy

Theorem(1.16):

open sets .

Every fuzzy topological group is a fuzzy regular –space.

Proof:

Let (G,\tilde{T}) be a fuzzy topological group. By homogeneity it is enough to show that if \tilde{F} is a fuzzy closed in G and $M_{\tilde{e}}(x) > M_{\tilde{F}}(x)$ then there exists fuzzy open sets \tilde{U}, \tilde{V} with $M_{\tilde{F}}(x) \le M_{\tilde{U}}(x)$, $M_{\tilde{e}}(x) \le M_{\tilde{V}}(x)$ and $min \{M_{\tilde{U}}(x), M_{\tilde{V}}(x)\} = \emptyset$. Now the complement of \tilde{F} is neighborhood of \tilde{e} ; We can therefore find an open neighborhood \tilde{V} of \tilde{e} such that $min \{M_{\tilde{V}\tilde{V}^{-1}}(x), M_{\tilde{F}}(x)\} = \emptyset$. But this implies $min \{M_{\tilde{V}}(x), M_{\tilde{V}F}(x)\} = \emptyset$, so we may take $M_{\tilde{U}}(x) = M_{\tilde{V}\tilde{F}}(x)$ which contains \tilde{F} and is fuzzy open set. **Corollary(1.17):**

- 1- Every fuzzy T_1 -topological group is a fuzzy T_3 -space.
- 2- Every fuzzy Hausdorff –topological group is a fuzzy T_3 –space.

Proof:

Obvious.

Theorem(1.18):

Let (G,\tilde{T}) be a fuzzy Hausdorff topological group, then $\cap \{\tilde{U}\} = \tilde{e}$, where $\{\tilde{U}\}$ is a fundamental system of fuzzy neighborhood of \tilde{e} .

Proof:

Let $\tilde{p} \in \tilde{U}$ for each \tilde{U} in $\{\tilde{U}\}$ and assume $\tilde{p} \neq \tilde{e}$. : G is fuzzy Hausdorff –space, then implies that there exists an fuzzy open neighborhood \tilde{V} of \tilde{e} such that $M_{\tilde{p}}(x) > M_{\tilde{V}}(x)$. But then there exists a \tilde{U} in $\{\tilde{U}\}$ such that $M_{\tilde{U}}(x) \leq M_{\tilde{V}}(x)$. We have the contradiction: $M_{\tilde{p}}(x) \leq M_{\tilde{U}}(x) \leq M_{\tilde{V}}(x)$ and $M_{\tilde{p}}(x) > M_{\tilde{V}}(x)$. Hence, $\tilde{p} = \tilde{e}$.

Theorem(1.19):

Let (G,\tilde{T}) be a fuzzy topological group, if $\cap {\{\tilde{U}\}} = \tilde{e}$, then (G,\tilde{T}) is fuzzy T_o –space.

Proof:

Let $\tilde{p} \neq \tilde{q}$, $\tilde{p}, \tilde{q} \in G$,

Then $M_{\tilde{p}\tilde{q}^{-1}}(x) \neq M_{\tilde{e}}(x)$ and, hence

 $: \cap \widetilde{U} = \widetilde{e}$ Then there exists a \widetilde{U} in $\{\widetilde{U}\}$ such that $M_{\widetilde{p}\widetilde{q}^{-1}}(x) > M_{\widetilde{U}}(x)$, thus $\widetilde{U}\widetilde{q}$ being a fuzzy neighborhood of \widetilde{q} and $M_{\widetilde{p}}(x) > M_{\widetilde{U}\widetilde{q}}(x)$.

REFERENCER

- 1. L. A. ZADEH, "Fuzzy sets" Inform and Cont, 8(1965), pp.338 -353.
- 2. C.L.CHANG, "Fuzzy topological spaces".45(1968),182-190.
- 3. A. ROSENFELD, "Fuzzy groups", J. Math. Appl. 35(1971), 512-517.

- 4. B. HUTTON, "Normality in Fuzzy Topological Spaces", J. Math. Anal. Appl. 50(1975), 74-79.
- 5. R. LOWEN, "Fuzzy Topological Spaces and Fuzzy Compactness", J. Math. Anal. Appl. 6(1976), 621-633.
- 6. D.H.FOSTER, "Fuzzy topological groups", J. Math. Appl. 67(1979), 549-564.
- 7. K. K. AZAD," Fuzzy Hausdorff Spaces and Fuzzy Perfect Mappings", J. Math. Anal. (1982), 297-305.
- P. E. KLODENK, "Fuzzy Dynamical Systems", Fuzzy Sets and Systems Vol.7(1982), pp.275-296.
- 9. J.KIM, "Meet-reducibility of Fuzzy subgroups". Fuzzy sets an systems Vol.91 (1997), PP.389-397.
- 10. G. J. KLIR. and Yuan, B., "Fuzzy Set Theory: Foundations and Applications", Prentic Hall PTR, (1997).
- 11. A. MUKHERJEE, "Some More Results on Induced Fuzzy Topological Spaces", J. Fuzzy Sets and Systems, 96(1998), 255-258.